Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 771075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899794

RESUMO

Training set construction is an important prerequisite to Genomic Prediction (GP), and while this has been studied in diploids, polyploids have not received the same attention. Polyploidy is a common feature in many crop plants, like for example banana and blueberry, but also potato which is the third most important crop in the world in terms of food consumption, after rice and wheat. The aim of this study was to investigate the impact of different training set construction methods using a publicly available diversity panel of tetraploid potatoes. Four methods of training set construction were compared: simple random sampling, stratified random sampling, genetic distance sampling and sampling based on the coefficient of determination (CDmean). For stratified random sampling, population structure analyses were carried out in order to define sub-populations, but since sub-populations accounted for only 16.6% of genetic variation, there were negligible differences between stratified and simple random sampling. For genetic distance sampling, four genetic distance measures were compared and though they performed similarly, Euclidean distance was the most consistent. In the majority of cases the CDmean method was the best sampling method, and compared to simple random sampling gave improvements of 4-14% in cross-validation scenarios, and 2-8% in scenarios with an independent test set, while genetic distance sampling gave improvements of 5.5-10.5% and 0.4-4.5%. No interaction was found between sampling method and the statistical model for the traits analyzed.

2.
BMC Genom Data ; 22(1): 4, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568071

RESUMO

BACKGROUND: Multi-parent populations (MPPs) are important resources for studying plant genetic architecture and detecting quantitative trait loci (QTLs). In MPPs, the QTL effects can show various levels of allelic diversity, which can be an important factor influencing the detection of QTLs. In MPPs, the allelic effects can be more or less specific. They can depend on an ancestor, a parent or the combination of parents in a cross. In this paper, we evaluated the effect of QTL allelic diversity on the QTL detection power in MPPs. RESULTS: We simulated: a) cross-specific QTLs; b) parental and ancestral QTLs; and c) bi-allelic QTLs. Inspired by a real application in sugar beet, we tested different MPP designs (diallel, chessboard, factorial, and NAM) derived from five or nine parents to explore the ability to sample genetic diversity and detect QTLs. Using a fixed total population size, the QTL detection power was larger in MPPs with fewer but larger crosses derived from a reduced number of parents. The use of a larger set of parents was useful to detect rare alleles with a large phenotypic effect. The benefit of using a larger set of parents was however conditioned on an increase of the total population size. We also determined empirical confidence intervals for QTL location to compare the resolution of different designs. For QTLs representing 6% of the phenotypic variation, using 1600 F2 offspring individuals, we found average 95% confidence intervals over different designs of 49 and 25 cM for cross-specific and bi-allelic QTLs, respectively. CONCLUSIONS: MPPs derived from less parents with few but large crosses generally increased the QTL detection power. Using a larger set of parents to cover a wider genetic diversity can be useful to detect QTLs with a reduced minor allele frequency when the QTL effect is large and when the total population size is increased.


Assuntos
Alelos , Beta vulgaris/genética , Locos de Características Quantitativas/genética
3.
Hortic Res ; 8(1): 4, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33384448

RESUMO

Water deficit is a major worldwide constraint to common bean (Phaseolus vulgaris L.) production, being photosynthesis one of the most affected physiological processes. To gain insights into the genetic basis of the photosynthetic response of common bean under water-limited conditions, a collection of 158 Portuguese accessions was grown under both well-watered and water-deficit regimes. Leaf gas-exchange parameters were measured and photosynthetic pigments quantified. The same collection was genotyped using SNP arrays, and SNP-trait associations tested considering a linear mixed model accounting for the genetic relatedness among accessions. A total of 133 SNP-trait associations were identified for net CO2 assimilation rate, transpiration rate, stomatal conductance, and chlorophylls a and b, carotenes, and xanthophyll contents. Ninety of these associations were detected under water-deficit and 43 under well-watered conditions, with only two associations common to both treatments. Identified candidate genes revealed that stomatal regulation, protein translocation across membranes, redox mechanisms, hormone, and osmotic stress signaling were the most relevant processes involved in common bean response to water-limited conditions. These candidates are now preferential targets for common bean water-deficit-tolerance breeding. Additionally, new sources of water-deficit tolerance of Andean, Mesoamerican, and admixed origin were detected as accessions valuable for breeding, and not yet explored.

4.
Theor Appl Genet ; 134(3): 897-908, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33367942

RESUMO

Much has been published on QTL detection for complex traits using bi-parental and multi-parental crosses (linkage analysis) or diversity panels (GWAS studies). While successful for detection, transferability of results to real applications has proven more difficult. Here, we combined a QTL detection approach using a pre-breeding populations which utilized intensive phenotypic selection for the target trait across multiple plant generations, combined with rapid generation turnover (i.e. "speed breeding") to allow cycling of multiple plant generations each year. The reasoning is that QTL mapping information would complement the selection process by identifying the genome regions under selection within the relevant germplasm. Questions to answer were the location of the genomic regions determining response to selection and the origin of the favourable alleles within the pedigree. We used data from a pre-breeding program that aimed at pyramiding different resistance sources to Fusarium crown rot into elite (but susceptible) wheat backgrounds. The population resulted from a complex backcrossing scheme involving multiple resistance donors and multiple elite backgrounds, akin to a MAGIC population (985 genotypes in total, with founders, and two major offspring layers within the pedigree). A significant increase in the resistance level was observed (i.e. a positive response to selection) after the selection process, and 17 regions significantly associated with that response were identified using a GWAS approach. Those regions included known QTL as well as potentially novel regions contributing resistance to Fusarium crown rot. In addition, we were able to trace back the sources of the favourable alleles for each QTL. We demonstrate that QTL detection using breeding populations under selection for the target trait can identify QTL controlling the target trait and that the frequency of the favourable alleles was increased as a response to selection, thereby validating the QTL detected. This is a valuable opportunistic approach that can provide QTL information that is more easily transferred to breeding applications.


Assuntos
Resistência à Doença/genética , Fusarium/fisiologia , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia
5.
J Agric Food Chem ; 68(29): 7809-7818, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571020

RESUMO

Odor and aroma, resulting from the perception of volatiles by the olfactory receptors, are important in consumer food acceptance. To develop more efficient molecular breeding tools to improve the odor/aroma on maize (Zea mays L.), a staple food crop, increasing the knowledge on the genetic basis of maize volatilome is needed. In this work, we conducted a genome-wide association study on a unique germplasm collection to identify genomic regions controlling maize wholemeal flour's volatilome. We identified 64 regions on the maize genome and candidate genes controlling the levels of 15 volatiles, mainly aldehydes. As an example, the Zm00001d033623 gene was within a region associated with 2-octenal (E) and 2-nonenal (E), two byproducts of linoleic acid oxidation. This gene codes for linoleate 9S-lipoxygenase, an enzyme responsible for oxidizing linoleic acid. This knowledge can now support the development of molecular tools to increase the selection efficacy/efficiency of these volatiles within maize breeding programs.


Assuntos
Farinha/análise , Genoma de Planta , Compostos Orgânicos Voláteis/química , Zea mays/genética , Estudo de Associação Genômica Ampla , Genômica , Odorantes/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Zea mays/química , Zea mays/metabolismo
6.
Theor Appl Genet ; 133(9): 2627-2638, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32518992

RESUMO

KEY MESSAGE: Multi-parent populations multi-environment QTL experiments data should be analysed jointly to estimate the QTL effect variation within the population and between environments. Commonly, QTL detection in multi-parent populations (MPPs) data measured in multiple environments (ME) is done by analyzing genotypic values 'averaged' across environments. This method ignores the environment-specific QTL (QTLxE) effects. Running separate single environment analyses is a possibility to measure QTLxE effects, but those analyses do not model the genetic covariance due to the use of the same genotype in different environments. In this paper, we propose methods to analyse MPP-ME QTL experiments using simultaneously the data from several environments and modelling the genotypic covariance. Using data from the EU-NAM Flint population, we show that these methods estimate the QTLxE effects and that they can improve the quality of the QTL detection. Those methods also have a larger inference power. For example, they can be extended to integrate environmental indices like temperature or precipitation to better understand the mechanisms behind the QTLxE effects. Therefore, our methodology allows the exploitation of the full MPP-ME data potential: to estimate QTL effect variation (a) within the MPP between sub-populations due to different genetic backgrounds and (b) between environments.


Assuntos
Cruzamentos Genéticos , Meio Ambiente , Modelos Genéticos , Locos de Características Quantitativas , Zea mays/genética , Interação Gene-Ambiente , Genótipo
7.
J Agric Food Chem ; 68(13): 4051-4061, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32141752

RESUMO

The interest in antioxidant compound breeding in maize (Zea mays L.), a major food crop, has increased in recent years. However, breeding of antioxidant compounds in maize can be hampered, given the complex genetic nature of these compounds. In this work, we followed a genome-wide association approach, using a unique germplasm collection (containing Portuguese germplasm), to study the genetic basis of several antioxidants in maize. Sixty-seven genomic regions associated with seven antioxidant compounds and two color-related traits were identified. Several significant associations were located within or near genes involved in the carotenoid (Zm00001d036345) and tocopherol biosynthetic pathways (Zm00001d017746). Some indications of a negative selection against α-tocopherol levels were detected in the Portuguese maize germplasm. The strongest single nucleotide polymorphism (SNP)-trait associations and the SNP alleles with larger effect sizes were pinpointed and set as priority for future validation studies; these associations detected now constitute a benchmark for developing molecular selection tools for antioxidant compound selection in maize.


Assuntos
Antioxidantes/metabolismo , Carotenoides/metabolismo , Genoma de Planta , Zea mays/genética , Alelos , Antioxidantes/análise , Vias Biossintéticas , Carotenoides/análise , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/química , Zea mays/metabolismo
8.
Phytopathology ; 110(3): 633-647, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31680652

RESUMO

Common bean (Phaseolus vulgaris) is one of the most consumed legume crops in the world, and Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. phaseoli, is one of the major diseases affecting its production. Portugal holds a very promising common bean germplasm with an admixed genetic background that may reveal novel genetic resistance combinations between the original Andean and Mesoamerican gene pools. To identify new sources of Fusarium wilt resistance and detect resistance-associated single-nucleotide polymorphisms (SNPs), we explored, for the first time, a diverse collection of the underused Portuguese common bean germplasm by using genome-wide association analyses. The collection was evaluated for Fusarium wilt resistance under growth chamber conditions, with the highly virulent F. oxysporum f. sp. phaseoli strain FOP-SP1 race 6. Fourteen of the 162 Portuguese accessions evaluated were highly resistant and 71 intermediate. The same collection was genotyped with DNA sequencing arrays, and SNP-resistance associations were tested via a mixed linear model accounting for the genetic relatedness between accessions. The results from the association mapping revealed nine SNPs associated with resistance on chromosomes Pv04, Pv05, Pv07, and Pv08, indicating that Fusarium wilt resistance is under oligogenic control. Putative candidate genes related to phytoalexin biosynthesis, hypersensitive response, and plant primary metabolism were identified. The results reported here highlight the importance of exploring underused germplasm for new sources of resistance and provide new genomic targets for the development of functional markers to support selection in future disease resistance breeding programs.


Assuntos
Fusarium , Phaseolus , Resistência à Doença , Estudo de Associação Genômica Ampla , Humanos , Doenças das Plantas , Portugal
9.
Front Plant Sci ; 10: 1491, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827479

RESUMO

Genomic prediction of complex traits, say yield, benefits from including information on correlated component traits. Statistical criteria to decide which yield components to consider in the prediction model include the heritability of the component traits and their genetic correlation with yield. Not all component traits are easy to measure. Therefore, it may be attractive to include proxies to yield components, where these proxies are measured in (high-throughput) phenotyping platforms during the growing season. Using the Agricultural Production Systems Simulator (APSIM)-wheat cropping systems model, we simulated phenotypes for a wheat diversity panel segregating for a set of physiological parameters regulating phenology, biomass partitioning, and the ability to capture environmental resources. The distribution of the additive quantitative trait locus effects regulating the APSIM physiological parameters approximated the same distribution of quantitative trait locus effects on real phenotypic data for yield and heading date. We use the crop growth model APSIM-wheat to simulate phenotypes in three Australian environments with contrasting water deficit patterns. The APSIM output contained the dynamics of biomass and canopy cover, plus yield at the end of the growing season. Each water deficit pattern triggered different adaptive mechanisms and the impact of component traits differed between drought scenarios. We evaluated multiple phenotyping schedules by adding plot and measurement error to the dynamics of biomass and canopy cover. We used these trait dynamics to fit parametric models and P-splines to extract parameters with a larger heritability than the phenotypes at individual time points. We used those parameters in multi-trait prediction models for final yield. The combined use of crop growth models and multi-trait genomic prediction models provides a procedure to assess the efficiency of phenotyping strategies and compare methods to model trait dynamics. It also allows us to quantify the impact of yield components on yield prediction accuracy even in different environment types. In scenarios with mild or no water stress, yield prediction accuracy benefitted from including biomass and green canopy cover parameters. The advantage of the multi-trait model was smaller for the early-drought scenario, due to the reduced correlation between the secondary and the target trait. Therefore, multi-trait genomic prediction models for yield require scenario-specific correlated traits.

10.
Front Plant Sci ; 10: 1540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867027

RESUMO

Genotype by environment interaction (G×E) for the target trait, e.g. yield, is an emerging property of agricultural systems and results from the interplay between a hierarchy of secondary traits involving the capture and allocation of environmental resources during the growing season. This hierarchy of secondary traits ranges from basic traits that correspond to response mechanisms/sensitivities, to intermediate traits that integrate a larger number of processes over time and therefore show a larger amount of G×E. Traits underlying yield differ in their contribution to adaptation across environmental conditions and have different levels of G×E. Here, we provide a framework to study the performance of genotype to phenotype (G2P) modeling approaches. We generate and analyze response surfaces, or adaptation landscapes, for yield and yield related traits, emphasizing the organization of the traits in a hierarchy and their development and interactions over time. We use the crop growth model APSIM-wheat with genotype-dependent parameters as a tool to simulate non-linear trait responses over time with complex trait dependencies and apply it to wheat crops in Australia. For biological realism, APSIM parameters were given a genetic basis of 300 QTLs sampled from a gamma distribution whose shape and rate parameters were estimated from real wheat data. In the simulations, the hierarchical organization of the traits and their interactions over time cause G×E for yield even when underlying traits do not show G×E. Insight into how G×E arises during growth and development helps to improve the accuracy of phenotype predictions within and across environments and to optimize trial networks. We produced a tangible simulated adaptation landscape for yield that we first investigated for its biological credibility by statistical models for G×E that incorporate genotypic and environmental covariables. Subsequently, the simulated trait data were used to evaluate statistical genotype-to-phenotype models for multiple traits and environments and to characterize relationships between traits over time and across environments, as a way to identify traits that could be useful to select for specific adaptation. Designed appropriately, these types of simulated landscapes might also serve as a basis to train other, more deep learning methodologies in order to transfer such network models to real-world situations.

11.
Front Plant Sci ; 10: 997, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417601

RESUMO

Grain yield and stay-green drought adaptation trait are important targets of selection in grain sorghum breeding for broad adaptation to a range of environments. Genomic prediction for these traits may be enhanced by joint multi-trait analysis. The objectives of this study were to assess the capacity of multi-trait models to improve genomic prediction of parental breeding values for grain yield and stay-green in sorghum by using information from correlated auxiliary traits, and to determine the combinations of traits that optimize predictive results in specific scenarios. The dataset included phenotypic performance of 2645 testcross hybrids across 26 environments as well as genomic and pedigree information on their female parental lines. The traits considered were grain yield (GY), stay-green (SG), plant height (PH), and flowering time (FT). We evaluated the improvement in predictive performance of multi-trait G-BLUP models relative to single-trait G-BLUP. The use of a blended kinship matrix exploiting pedigree and genomic information was also explored to optimize multi-trait predictions. Predictive ability for GY increased up to 16% when PH information on the training population was exploited through multi-trait genomic analysis. For SG prediction, full advantage from multi-trait G-BLUP was obtained only when GY information was also available on the predicted lines per se, with predictive ability improvements of up to 19%. Predictive ability, unbiasedness and accuracy of predictions from conventional multi-trait G-BLUP were further optimized by using a combined pedigree-genomic relationship matrix. Results of this study suggest that multi-trait genomic evaluation combining routinely measured traits may be used to improve prediction of crop productivity and drought adaptability in grain sorghum.

12.
PLoS One ; 14(5): e0209631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048845

RESUMO

INTRODUCTION: Defoliation and light competition are ubiquitous stressors that can strongly limit plant performance. Tolerance to defoliation is often associated with compensatory growth, which could be positively or negatively related to plant growth. Genetic variation in growth, tolerance and compensation, in turn, plays an important role in the evolutionary adaptation of plants to changing disturbance regimes but this issue has been poorly investigated for long-lived woody species. We quantified genetic variation in plant growth and growth parameters, tolerance to defoliation and compensation for a population of the understorey palm Chamaedorea elegans. In addition, we evaluated genetic correlations between growth and tolerance/compensation. METHODS: We performed a greenhouse experiment with 711 seedlings from 43 families with twelve or more individuals of C. elegans. Seeds were collected in southeast Mexico within a 0.7 ha natural forest area. A two-third defoliation treatment (repeated every two months) was applied to half of the individuals to simulate leaf loss. Compensatory responses in specific leaf area, biomass allocation to leaves and growth per unit leaf area were quantified using iterative growth models. RESULTS: We found that growth rate was highly heritable and that plants compensated strongly for leaf loss. However, genetic variation in tolerance, compensation, and the individual compensatory responses was low. We found strong correlations between family mean growth rates in control and defoliation treatments. We did not find indications for growth-tolerance/compensation trade-offs: genetic correlation between tolerance/compensation and growth rate were not significant. IMPLICATIONS: The high genetic variation in growth rate, but low genetic variation in tolerance and compensation observed here suggest high ability to adapt to changes in environment that require different growth rates, but a low potential for evolutionary adaptation to changes in damage or herbivory. The strong correlations between family mean growth rates in control and defoliation treatments suggest that performance differences among families are also maintained under stress of disturbance.


Assuntos
Arecaceae/crescimento & desenvolvimento , Arecaceae/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , México , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
13.
Theor Appl Genet ; 132(7): 2055-2067, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30968160

RESUMO

KEY MESSAGE: The use of a kinship matrix integrating pedigree- and marker-based relationships optimized the performance of genomic prediction in sorghum, especially for traits of lower heritability. Selection based on genome-wide markers has become an active breeding strategy in crops. Genomic prediction models can make use of pedigree information to account for the residual polygenic effects not captured by markers. Our aim was to evaluate the impact of using pedigree and genomic information on prediction quality of breeding values for different traits in sorghum. We explored BLUP models that use weighted combinations of pedigree and genomic relationship matrices. The optimal weighting factor was empirically determined in order to maximize predictive ability after evaluating a range of candidate weights. The phenotypic data consisted of testcross evaluations of sorghum parental lines across multiple environments. All lines were genotyped, and full pedigree information was available. The performance of the best predictive combined matrix was compared to that of models fitting the component matrices independently. Model performance was assessed using cross-validation technique. Fitting a combined pedigree-genomic matrix with the optimal weight always yielded the largest increases in predictive ability and the largest reductions in prediction bias relative to the simple G-BLUP. However, the weight that optimized prediction varied across traits. The benefits of including pedigree information in the genomic model were more relevant for traits with lower heritability, such as grain yield and stay-green. Our results suggest that the combination of pedigree and genomic relatedness can be used to optimize predictions of complex traits in crops when the additive variation is not fully explained by markers.


Assuntos
Genômica/métodos , Modelos Genéticos , Linhagem , Melhoramento Vegetal , Sorghum/genética , Genótipo , Fenótipo
14.
Plant Sci ; 282: 23-39, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31003609

RESUMO

New types of phenotyping tools generate large amounts of data on many aspects of plant physiology and morphology with high spatial and temporal resolution. These new phenotyping data are potentially useful to improve understanding and prediction of complex traits, like yield, that are characterized by strong environmental context dependencies, i.e., genotype by environment interactions. For an evaluation of the utility of new phenotyping information, we will look at how this information can be incorporated in different classes of genotype-to-phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and environmental inputs. In the last decade, access to high-density single nucleotide polymorphism markers (SNPs) and sequence information has boosted the development of a class of G2P models called genomic prediction models that predict phenotypes from genome wide marker profiles. The challenge now is to build G2P models that incorporate simultaneously extensive genomic information alongside with new phenotypic information. Beyond the modification of existing G2P models, new G2P paradigms are required. We present candidate G2P models for the integration of genomic and new phenotyping information and illustrate their use in examples. Special attention will be given to the modelling of genotype by environment interactions. The G2P models provide a framework for model based phenotyping and the evaluation of the utility of phenotyping information in the context of breeding programs.


Assuntos
Genoma de Planta/genética , Melhoramento Vegetal , Interação Gene-Ambiente , Genômica/métodos , Genótipo , Fenótipo , Seleção Genética
15.
BMC Plant Biol ; 19(1): 123, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940081

RESUMO

BACKGROUND: Maize is a crop in high demand for food purposes and consumers worldwide are increasingly concerned with food quality. However, breeding for improved quality is a complex task and therefore developing tools to select for better quality products is of great importance. Kernel composition, flour pasting behavior, and flour particle size have been previously identified as crucial for maize-based food quality. In this work we carried out a genome-wide association study to identify genomic regions controlling compositional and pasting properties of maize wholemeal flour. RESULTS: A collection of 132 diverse inbred lines, with a considerable representation of the food used Portuguese unique germplasm, was trialed during two seasons, and harvested samples characterized for main compositional traits, flour pasting parameters and mean particle size. The collection was genotyped with the MaizeSNP50 array. SNP-trait associations were tested using a mixed linear model accounting for genetic relatedness. Fifty-seven genomic regions were identified, associated with the 11 different quality-related traits evaluated. Regions controlling multiple traits were detected and potential candidate genes identified. As an example, for two viscosity parameters that reflect the capacity of the starch to absorb water and swell, the strongest common associated region was located near the dull endosperm 1 gene that encodes a starch synthase and is determinant on the starch endosperm structure in maize. CONCLUSIONS: This study allowed for identifying relevant regions on the maize genome affecting maize kernel composition and flour pasting behavior, candidate genes for the majority of the quality-associated genomic regions, or the most promising target regions to develop molecular tools to increase efficacy and efficiency of quality traits selection (such as "breadability") within maize breeding programs.


Assuntos
Estudo de Associação Genômica Ampla , Amido/metabolismo , Zea mays/genética , Endosperma/genética , Endosperma/metabolismo , Farinha , Genômica , Genótipo , Valor Nutritivo , Fenótipo , Melhoramento Vegetal , Sementes/genética , Sementes/metabolismo , Zea mays/metabolismo
16.
PLoS One ; 12(5): e0178290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542488

RESUMO

Association mapping was used to identify genome regions affecting yield formation, crop phenology and crop biomass in a collection of 172 durum wheat landraces representative of the genetic diversity of ancient local durum varieties from the Mediterranean Basin. The collection was genotyped with 1,149 DArT markers and phenotyped in Spanish northern and southern locations during three years. A total of 245 significant marker trait associations (MTAs) (P<0.01) were detected. Some of these associations confirmed previously identified quantitative trait loci (QTL) and/or candidate genes, and others are reported for the first time here. Eighty-six MTAs corresponded with yield and yield component traits, 70 to phenology and 89 to biomass production. Twelve genomic regions harbouring stable MTAs (significant in three or more environments) were identified, while five and two regions showed specific MTAs for northern and southern environments, respectively. Sixty per cent of MTAs were located on the B genome and 29% on the A genome. The marker wPt-9859 was detected in 12 MTAs, associated with six traits in four environments and the mean across years. To refine QTL positions, a meta-analysis was performed. A total of 477 unique QTLs were projected onto a durum wheat consensus map and were condensed to 71 meta-QTLs and left 13 QTLs as singletons. Sixty-one percent of QTLs explained less than 10% of the phenotypic variance confirming the high genetic complexity of the traits analysed.


Assuntos
Locos de Características Quantitativas/genética , Triticum/genética , Biomassa , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Produção Agrícola , Genes de Plantas/genética , Genes de Plantas/fisiologia , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Triticum/crescimento & desenvolvimento
17.
Theor Appl Genet ; 130(8): 1753-1764, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28547012

RESUMO

KEY MESSAGE: In the QTL analysis of multi-parent populations, the inclusion of QTLs with various types of effects can lead to a better description of the phenotypic variation and increased power. For the type of QTL effect in QTL models for multi-parent populations (MPPs), various options exist to define them with respect to their origin. They can be modelled as referring to close parental lines or to further away ancestral founder lines. QTL models for MPPs can also be characterized by the homo- or heterogeneity of variance for polygenic effects. The most suitable model for the origin of the QTL effect and the homo- or heterogeneity of polygenic effects may be a function of the genetic distance distribution between the parents of MPPs. We investigated the statistical properties of various QTL detection models for MPPs taking into account the genetic distances between the parents of the MPP. We evaluated models with different assumptions about the QTL effect and the form of the residual term using cross validation. For the EU-NAM data, we showed that it can be useful to mix in the same model QTLs with different types of effects (parental, ancestral, or bi-allelic). The benefit of using cross-specific residual terms to handle the heterogeneity of variance was less obvious for this particular data set.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Zea mays/genética , Alelos , Cruzamentos Genéticos , Genótipo , Modelos Estatísticos , Fenótipo
18.
Theor Appl Genet ; 130(7): 1375-1392, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28374049

RESUMO

KEY MESSAGE: A flexible and user-friendly spatial method called SpATS performed comparably to more elaborate and trial-specific spatial models in a series of sorghum breeding trials. Adjustment for spatial trends in plant breeding field trials is essential for efficient evaluation and selection of genotypes. Current mixed model methods of spatial analysis are based on a multi-step modelling process where global and local trends are fitted after trying several candidate spatial models. This paper reports the application of a novel spatial method that accounts for all types of continuous field variation in a single modelling step by fitting a smooth surface. The method uses two-dimensional P-splines with anisotropic smoothing formulated in the mixed model framework, referred to as SpATS model. We applied this methodology to a series of large and partially replicated sorghum breeding trials. The new model was assessed in comparison with the more elaborate standard spatial models that use autoregressive correlation of residuals. The improvements in precision and the predictions of genotypic values produced by the SpATS model were equivalent to those obtained using the best fitting standard spatial models for each trial. One advantage of the approach with SpATS is that all patterns of spatial trend and genetic effects were modelled simultaneously by fitting a single model. Furthermore, we used a flexible model to adequately adjust for field trends. This strategy reduces potential parameter identification problems and simplifies the model selection process. Therefore, the new method should be considered as an efficient and easy-to-use alternative for routine analyses of plant breeding trials.


Assuntos
Modelos Genéticos , Melhoramento Vegetal/métodos , Sorghum/genética , Algoritmos , Genótipo , Análise Espacial
19.
BMC Genomics ; 17(1): 773, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716058

RESUMO

BACKGROUND: Whole-genome genotyping techniques like Genotyping-by-sequencing (GBS) are being used for genetic studies such as Genome-Wide Association (GWAS) and Genomewide Selection (GS), where different strategies for imputation have been developed. Nevertheless, imputation error may lead to poor performance (i.e. smaller power or higher false positive rate) when complete data is not required as it is for GWAS, and each marker is taken at a time. The aim of this study was to compare the performance of GWAS analysis for Quantitative Trait Loci (QTL) of major and minor effect using different imputation methods when no reference panel is available in a wheat GBS panel. RESULTS: In this study, we compared the power and false positive rate of dissecting quantitative traits for imputed and not-imputed marker score matrices in: (1) a complete molecular marker barley panel array, and (2) a GBS wheat panel with missing data. We found that there is an ascertainment bias in imputation method comparisons. Simulating over a complete matrix and creating missing data at random proved that imputation methods have a poorer performance. Furthermore, we found that when QTL were simulated with imputed data, the imputation methods performed better than the not-imputed ones. On the other hand, when QTL were simulated with not-imputed data, the not-imputed method and one of the imputation methods performed better for dissecting quantitative traits. Moreover, larger differences between imputation methods were detected for QTL of major effect than QTL of minor effect. We also compared the different marker score matrices for GWAS analysis in a real wheat phenotype dataset, and we found minimal differences indicating that imputation did not improve the GWAS performance when a reference panel was not available. CONCLUSIONS: Poorer performance was found in GWAS analysis when an imputed marker score matrix was used, no reference panel is available, in a wheat GBS panel.


Assuntos
Genoma de Planta , Genômica , Triticum/genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Padrões de Herança , Fenótipo , Locos de Características Quantitativas , Reprodutibilidade dos Testes
20.
G3 (Bethesda) ; 6(11): 3733-3747, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27672112

RESUMO

Genome-enabled prediction provides breeders with the means to increase the number of genotypes that can be evaluated for selection. One of the major challenges in genome-enabled prediction is how to construct a training set of genotypes from a calibration set that represents the target population of genotypes, where the calibration set is composed of a training and validation set. A random sampling protocol of genotypes from the calibration set will lead to low quality coverage of the total genetic space by the training set when the calibration set contains population structure. As a consequence, predictive ability will be affected negatively, because some parts of the genotypic diversity in the target population will be under-represented in the training set, whereas other parts will be over-represented. Therefore, we propose a training set construction method that uniformly samples the genetic space spanned by the target population of genotypes, thereby increasing predictive ability. To evaluate our method, we constructed training sets alongside with the identification of corresponding genomic prediction models for four genotype panels that differed in the amount of population structure they contained (maize Flint, maize Dent, wheat, and rice). Training sets were constructed using uniform sampling, stratified-uniform sampling, stratified sampling and random sampling. We compared these methods with a method that maximizes the generalized coefficient of determination (CD). Several training set sizes were considered. We investigated four genomic prediction models: multi-locus QTL models, GBLUP models, combinations of QTL and GBLUPs, and Reproducing Kernel Hilbert Space (RKHS) models. For the maize and wheat panels, construction of the training set under uniform sampling led to a larger predictive ability than under stratified and random sampling. The results of our methods were similar to those of the CD method. For the rice panel, all training set construction methods led to similar predictive ability, a reflection of the very strong population structure in this panel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA